Development of an AAV5 gene therapy for Fabry disease

uniQure

Jolanda Liefhebber
uniQure Biopharma B.V.
Amsterdam, The Netherlands
This presentation contains forward-looking statements. All statements other than statements of historical fact are forward-looking statements, which are often indicated by terms such as “anticipate,” “believe,” “could,” “estimate,” “expect,” “goal,” “intend,” “look forward to,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “will,” “would” and similar expressions. Forward-looking statements are based on management’s beliefs and assumptions and on information available to management only as of the date of this presentation. These forward-looking statements include, but are not limited to, statements regarding the development of our gene therapies, the success of our collaborations, and the risk of cessation, delay or lack of success of any of our ongoing or planned clinical studies and/or development of our product candidates. Our actual results could differ materially from those anticipated in these forward-looking statements for many reasons, including, without limitation, risks associated with collaboration arrangements, our and our collaborators’ clinical development activities, regulatory oversight, development of product candidates, product commercialization and intellectual property claims, as well as the risks, uncertainties and other factors described under the heading “Risk Factors” in uniQure’s Quarterly Report on Form 10-Q filed on October 28, 2019. Given these risks, uncertainties and other factors, you should not place undue reliance on these forward-looking statements, and we assume no obligation to update these forward-looking statements, even if new information becomes available in the future.
Fabry disease: a Lysosomal Storage Disease (LSD)

- X-linked genetic disorder
- Deficiency of α-galactosidase A (α-Gal A or GLA)
- Females also suffer from Fabry, but severity depends on X-inactivation despite having GLA activity in the plasma
- Systemic accumulation of substrate; Gb3 and LysoGb3 in plasma, tissues and organs
- Bi-weekly ERT infusions have limited effectiveness due to lack of cross-correction
- Furthermore, a significant number of patients develop antibodies to GLA

in black: early symptoms
in red: late symptoms
Limitations of ERT:

- Poor cross-correction of GLA
 - Heterozygous females are also symptomatic
 - Thus, unaffected cells produce GLA but uptake into lysosomes via the Mannose 6-phosphate receptor is poor
 - In other LSD’s, such as MPS II, the enzyme effectively cross-corrects and hence carriers are asymptomatic
- Poor cross-correction hampers clearance of substrates in the target organs in particular the kidney and the heart
- Long-term ERT could slow disease progression, but effects may be limited
uniQure’s approach: modified NAGA

Novel Approach
- Expression of modified NAGA (modNAGA) using AAV5 vector (constant supply)
- ModNAGA has GLA activity and is able to reduce (Lyso-)Gb3 accumulation

- More stable in blood and at low pH
- More efficient uptake
- Better distribution

- Expression of endogenous NAGA in classic Fabry patients

- More effective (cross-correction) than ERT

Tajima et al. 2009 (PMID: 19853240)

Licensed from Prof. Sakuraba, Tokyo
Two approaches: liver specific or constitutive promoter

Liver produces and secretes protein, which can be taken up into target organs

Constitutive protein expression from target organs

L1

C1

modNAGA

ModNAGA

AAV5

NAGA

coNAGA

SV40pA

or

or
Studies to show proof of concept of (AAV5-)modNAGA - *in vitro* and *in vivo* -

In vitro, Fabry fibroblasts
- GLA activity
- LysoGb3
- M6P-receptor mediated uptake

Wt mice
- GLA activity
- (plasma and target organs)

Fabry mice
- GLA activity
- LysoGb3
- (plasma and target organs)

NHP
- GLA-activity
- (plasma)
modNAGA cross-corrects Fabry patient-derived fibroblasts through M6P-dependent uptake

Conclusion: *In vitro* produced modNAGA is taken up via M6P-receptors and reduces lysoGb3 levels in Fabry patient derived fibroblasts.
AAV5-modNAGA increases plasma GLA activity and reduces LysoGb3 in Fabry (GLA-KO) mice

Collaboration with Hans Aerts, Leiden and Carlie de Vries, Amsterdam

Conclusion: Increased GLA-activity and approximately 50% reduction of LysoGb3 in plasma
Increased GLA activity and reduction of LysoGb3 in Fabry (GLA-KO) mice liver following AAV5-modNAGA injection

Conclusion: More than 20 times increased GLA-activity and roughly 80% reduction of LysoGb3 in the liver
AAV5-modNAGA reduces LysoGb3 in target organs in Fabry (GLA-KO) mice

GLA KO mice (n=7)
5e13 gc/kg (i.v.)
AAV5-modNAGA

Conclusion: Continuous (30 wks) LysoGb3 reduction in target organs kidney and heart and potentially for the brain.
Reduction of Gb3 in the kidneys of Fabry (GLA-KO) mice

- Immunohistochemistry
 - Anti-Gb3 staining (red); Nucleus (blue)
 - Fabry mice show high Gb3 accumulation in the medullary area

Conclusion: Moderate reduction of Gb3 in cortical and medullary structures of the kidney
Wild type cynomolgus monkey
9±13 gc/kg (n=2, i.v.)
AAV5-modNAGA

Preliminary conclusion: Expression from both AAV5-modNAGA vectors in the liver and GLA-activity levels in plasma follow results of GLA-KO mice
ModNAGA has a low immunogenicity risk

Collaboration with Abzena and Pro-immune

ModNAGA has a low immunogenicity risk

Immunogenicity evaluation of modNAGA

<table>
<thead>
<tr>
<th>Step 1 – In silico</th>
<th>Step 2 – In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms to screen potential T-cell epitopes</td>
<td>2 MHC class I peptides tested to common MHC class I (HLA) alleles:</td>
</tr>
<tr>
<td>Identify linear motifs (9-10 aa) that bind to HLA MHC class I or II molecules</td>
<td>A01:01, A02:01, A03:01, A11:01, A24:02, A29:02, B07:02, B08:01, B14:02, B15:01, B27:05, B35:01, B*40:01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ModNAGA</th>
<th>Moderate affinity</th>
<th>High affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC I peptides</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MHC II peptides</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Collaboration with Abzena and Pro-immune

Immunogenicity evaluation of modNAGA

<table>
<thead>
<tr>
<th>Step 1 – In silico</th>
<th>Step 2 – In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms to screen potential T-cell epitopes</td>
<td>2 MHC class I peptides tested to common MHC class I (HLA) alleles:</td>
</tr>
<tr>
<td>Identify linear motifs (9-10 aa) that bind to HLA MHC class I or II molecules</td>
<td>A01:01, A02:01, A03:01, A11:01, A24:02, A29:02, B07:02, B08:01, B14:02, B15:01, B27:05, B35:01, B*40:01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ModNAGA</th>
<th>Moderate affinity</th>
<th>High affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC I peptides</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MHC II peptides</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Collaboration with Abzena and Pro-immune

Immunogenicity evaluation of modNAGA

<table>
<thead>
<tr>
<th>Step 1 – In silico</th>
<th>Step 2 – In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms to screen potential T-cell epitopes</td>
<td>2 MHC class I peptides tested to common MHC class I (HLA) alleles:</td>
</tr>
<tr>
<td>Identify linear motifs (9-10 aa) that bind to HLA MHC class I or II molecules</td>
<td>A01:01, A02:01, A03:01, A11:01, A24:02, A29:02, B07:02, B08:01, B14:02, B15:01, B27:05, B35:01, B*40:01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ModNAGA</th>
<th>Moderate affinity</th>
<th>High affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC I peptides</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MHC II peptides</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Collaboration with Abzena and Pro-immune

Immunogenicity evaluation of modNAGA

<table>
<thead>
<tr>
<th>Step 1 – In silico</th>
<th>Step 2 – In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms to screen potential T-cell epitopes</td>
<td>2 MHC class I peptides tested to common MHC class I (HLA) alleles:</td>
</tr>
<tr>
<td>Identify linear motifs (9-10 aa) that bind to HLA MHC class I or II molecules</td>
<td>A01:01, A02:01, A03:01, A11:01, A24:02, A29:02, B07:02, B08:01, B14:02, B15:01, B27:05, B35:01, B*40:01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ModNAGA</th>
<th>Moderate affinity</th>
<th>High affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC I peptides</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MHC II peptides</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Collaboration with Abzena and Pro-immune

Immunogenicity evaluation of modNAGA

<table>
<thead>
<tr>
<th>Step 1 – In silico</th>
<th>Step 2 – In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms to screen potential T-cell epitopes</td>
<td>2 MHC class I peptides tested to common MHC class I (HLA) alleles:</td>
</tr>
<tr>
<td>Identify linear motifs (9-10 aa) that bind to HLA MHC class I or II molecules</td>
<td>A01:01, A02:01, A03:01, A11:01, A24:02, A29:02, B07:02, B08:01, B14:02, B15:01, B27:05, B35:01, B*40:01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ModNAGA</th>
<th>Moderate affinity</th>
<th>High affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC I peptides</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MHC II peptides</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Collaboration with Abzena and Pro-immune

Immunogenicity evaluation of modNAGA

<table>
<thead>
<tr>
<th>Step 1 – In silico</th>
<th>Step 2 – In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms to screen potential T-cell epitopes</td>
<td>2 MHC class I peptides tested to common MHC class I (HLA) alleles:</td>
</tr>
<tr>
<td>Identify linear motifs (9-10 aa) that bind to HLA MHC class I or II molecules</td>
<td>A01:01, A02:01, A03:01, A11:01, A24:02, A29:02, B07:02, B08:01, B14:02, B15:01, B27:05, B35:01, B*40:01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ModNAGA</th>
<th>Moderate affinity</th>
<th>High affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC I peptides</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MHC II peptides</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Conclusions

- AAV5-modNAGA results in GLA activity in plasma of NHP
- AAV5-modNAGA results in increased GLA activity and Lyso-Gb3 reduction in plasma and target organs for at least 30 weeks in GLA-KO mice
- Plasma GLA activity is not indicative for efficacy of therapy
- Expressed modNAGA contains high mannose glycans and is taken up via M6P-receptor
Acknowledgements

Research
- Johannes M.F.G. Aerts
- Maria J. Ferraz
- Chi-Lin Kuo
- Jan Aten
- Roelof Ottenhoff
- Carlie J.M. de Vries
- Hitoshi Sakuraba
- Ryoko Tsukahara

Vector and process development
- Erich Ehlert
- Tamar Grevelink
- Mustafa Kyamil
- Richard van Logtenstein
- Mark van Veen
- Jacek Lubelski

Analytical development
- Ying Poi Liu
- Andrew McCreary
- Maroeska Oudshoorn
- Lieke Paerels
- Astrid Valles-Sanchez
- Hendrina Wattimury
- Vanessa Zancanella
- Tom van der Zon

Non clinical development
- Dhivina Gagoomal
- Aurelia Gondrand
- Linda Tan
- H. Fogg
- Emily Mallet

University Leiden

Amsterdam UMC

Synpromics
uniQure